3,662 research outputs found

    Ranking efficient DMUs using cooperative game theory

    Get PDF
    The problem of ranking Decision Making Units (DMUs) in Data Envelopment Analysis (DEA) has been widely studied in the literature. Some of the proposed approaches use cooperative game theory as a tool to perform the ranking. In this paper, we use the Shapley value of two different cooperative games in which the players are the efficient DMUs and the characteristic function represents the increase in the discriminant power of DEA contributed by each efficient DMU. The idea is that if the efficient DMUs are not included in the modified reference sample then the efficiency score of some inefficient DMUs would be higher. The characteristic function represents, therefore, the change in the efficiency scores of the inefficient DMUs that occurs when a given coalition of efficient units is dropped from the sample. Alternatively, the characteristic function of the cooperative game can be defined as the change in the efficiency scores of the inefficient DMUs that occurs when a given coalition of efficient DMUs are the only efficient DMUs that are included in the sample. Since the two cooperative games proposed are dual games, their corresponding Shapley value coincide and thus lead to the same ranking. The more an ef- ficient DMU impacts the shape of the efficient frontier, the higher the increase in the efficiency scores of the inefficient DMUs its removal brings about and, hence, the higher its contribution to the overall discriminant power of the method. The proposed approach is illustrated on a number of datasets from the literature and compared with existing methods

    La construcción de un domicilio de seda críptico : patrones comportamentales de Embididos (Embioptera) tropicales, Clothoda longicauda, críptica y Gibocercus napoe, no críptica

    Get PDF
    Analysis of silk domicile construction revealed similarities and differences between two species of embiids: Clothoda longicauda (cryptic) and Gibocercus napoe (non-cryptic). Each species exhibited similar routines while spinning, attaching the silk to a substrate while spinning over their backs, and then reinforcing the silk. In later stages, Clothoda longicauda plastered its silk with gathered materials; whilst Gibocercus napoe maintained a domicile exclusively of silk. Significant differences where found in the duration of two behaviours: Walk and Clean body. Considerable behavioural variability was observed within individuals of the same species.El análisis de los comportamientos de construcción de domicilios de seda reveló similitudes y diferencias entre dos especies de embídidos: Clothoda longicauda (críptica) y Gibocercus napoe (no-críptica). Cada una mostró rutinas similares al tejer seda; mientras la adhieren al sustrato, mientras la tejen sobre su espalada y cuando, posteriormente, la refuerzan. En etapas posteriores, Clothoda longicauda cubre su seda con materiales recolectados; mientras que Gibocercus napoe mantiene sus domicilios únicamente de seda. Se encontraron diferencias significativas entre las dos especies en la duración de dos comportamientos: Caminar y Acicalar

    Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices

    Get PDF
    We demonstrate an enhanced and tailor-made directional emission of light-emitting devices using nanoimprinted hexagonal arrays of aluminum nanoparticles. Fourier microscopy reveals that the luminescence of the device is not only determined by the material properties of the organic dye molecules but is also strongly influenced by the coherent scattering resulting from periodically arranged metal nanoparticles. Emitters can couple to lattice-induced hybrid plasmonic–photonic modes sustained by plasmonic arrays. Such modes enhance the spatial coherence of an emitting layer, allowing the efficient beaming of the emission along narrow angular and spectral ranges. We show that tailoring the separation of the nanoparticles in the array yields an accurate angular distribution of the emission. This combination of large-area metal nanostructures fabricated by nanoimprint lithography and light-emitting devices is beneficial for the design and optimization of solid-state lighting systems

    Optimal sensor placement for classifier-based leak localization in drinking water networks

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a sensor placement method for classifier-based leak localization in Water Distribution Networks. The proposed approach consists in applying a Genetic Algorithm to decide the sensors to be used by a classifier (based on the k-Nearest Neighbor approach). The sensors are placed in an optimal way maximizing the accuracy of the leak localization. The results are illustrated by means of the application to the Hanoi District Metered Area and they are compared to the ones obtained by the Exhaustive Search Algorithm. A comparison with the results of a previous optimal sensor placement method is provided as well.Postprint (author's final draft

    Special issue: Fractal functions and applications

    Get PDF
    This volume gathers some important advances in the fields of fractional calculus and fractal curves and functions. Fractional derivatives and integrals play an increasingly important role in applied science, and these types of models are ubiquitous in the current scientific literature. The references [1, 2] are devoted to fractional calculus and an application of it to a coronavirus spreading model. The first one studies three procedures of inverse Laplace Transforms: A Sinc–Thiele approximation, a Sinc and a Sinc–Gaussian (SG) method. Both Sinc versions are exact methods of inverse Laplace Transforms. The author proves that SG-based transformations present some advantages over the pure Sinc version regarding stability and convergence properties. The convergence is of exponential type. All the methods presented are applied to Mittag-Leffler functions depending on one, two and three parameters, and the author proves that the representation of this kind of functions is very effective. The author concludes that even for variable-order fractional differential or integral equations, the Sinc–Gaussian method is a powerful procedure..

    Android Malware Clustering through Malicious Payload Mining

    Full text link
    Clustering has been well studied for desktop malware analysis as an effective triage method. Conventional similarity-based clustering techniques, however, cannot be immediately applied to Android malware analysis due to the excessive use of third-party libraries in Android application development and the widespread use of repackaging in malware development. We design and implement an Android malware clustering system through iterative mining of malicious payload and checking whether malware samples share the same version of malicious payload. Our system utilizes a hierarchical clustering technique and an efficient bit-vector format to represent Android apps. Experimental results demonstrate that our clustering approach achieves precision of 0.90 and recall of 0.75 for Android Genome malware dataset, and average precision of 0.98 and recall of 0.96 with respect to manually verified ground-truth.Comment: Proceedings of the 20th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2017

    Structural features of high-local-density water molecules: Insights from structure indicators based on the translational order between the first two molecular shells

    Get PDF
    The two-liquids scenario for liquid water assumes the existence of two competing preferential local molecular structural states characterized by either low or high local density. While the former is expected to present good local order thus involving privileged structures, the latter is usually regarded as conforming a high-entropy unstructured state. A main difference in the local arrangement of such "classes" of water molecules can be inferred from the degree of translational order between the first and second molecular shells. This is so, since the low-local-density molecules present a clear gap between the first two shells while in the case of the high-local-density ones, one or more molecules from the second shell have collapsed toward the first one, thus populating the intershell region. Some structural indicators, like the widely employed local structure index and the recently introduced ζ index, have been devised precisely on the basis of this observation, being successful in detecting well-structured low-local-density molecules. However, the nature of the high-local-density state has been mainly disregarded over the years. In this work we employ molecular dynamics simulations for two water models (the extended simple point charge model and the five-site model) at the liquid and supercooled regimes combined with the inherent dynamics approach (energy minimizations of the instantaneous configurations) in order to both rationalize the detailed structural and topological information that these indicators provide and to advance in our understanding of the high-density state.Fil: Montes de Oca, Joan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Accordino, Sebastián R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Verde, Alejandro Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Alarcón, Laureano M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Appignanesi, Gustavo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentin

    Visualization is crucial for understanding microbial processes in the ocean

    Get PDF
    Recent developments in community and single-cell genomic approaches have provided an unprecedented amount of information on the ecology of microbes in the aquatic environment. However, linkages between each specific microbe\u27s identity and their in situ level of activity (be it growth, division or just metabolic activity) are much more scarce. The ultimate goal of marine microbial ecology is to understand how the environment determines the types of different microbes in nature, their function, morphology and cell-to-cell interactions and to do so we should gather three levels of information, the genomic (including identity), the functional (activity or growth), and the morphological, and for as many individual cells as possible. We present a brief overview of methodologies applied to address single-cell activity in marine prokaryotes, together with a discussion of the difficulties in identifying and categorizing activity and growth. We then provide and discuss some examples showing how visualization has been pivotal for challenging established paradigms and for understanding the role of microbes in the environment, unveiling processes and interactions that otherwise would have been overlooked. We conclude by stating that more effort should be directed towards integrating visualization in future approaches if we want to gain a comprehensive insight into how microbes contribute to the functioning of ecosystems
    corecore